top of page

Publication

By time // With TOC                                                                                                                                                                        

2024

(95) Jiang, L., Hu, Y. C., Ai, F., Liang, Z., Y. C.*, "Rational design of anti-freezing electrolyte concentrations via freeze concentration process" Energy & Environmental Science, 2024. Link

95. website.gif

(94) Jiang, L., Lu, Y. C.*. "Building a Long-Lifespan Aqueous K-Ion Battery Operating at −35 °C" ACS Energy Letters, 2024. Link

2023

(91) Lei, J., Zhang, Y., Yao, Y., Yang, S., Leung, K., Fan, J., Lu, Y. C.*. "An active and durable molecular catalyst for aqueous polysulfide-based redox flow batteries" Nature Energy, 2023. Link

1.JPG
2023

(89) Dong, D., Wang, T., Sun, Y., Fan, J., Lu, Y. C.*, "Hydrotropic solubilization of zinc acetates for sustainable aqueous battery electrolytes" Nature Sustainability, 2023. Link

ns.JPG

(93)  Zuo, C., Dong, D., Wang, H., Sun, Y., Lu, Y. C.*. "Bromide-based nonflammable electrolyte for safe and long-life
sodium metal batteries" Energy & Environmental Science, 2023. Link

1.JPG

(92)  Zou, Q., Liang, Z., Wang, W., Dong, D., Lu, Y. C.*. "A nuclei-rich strategy for highly reversible dendrite-free zinc metal anodes" Energy & Environmental Science, 2023. Link

d3ee03246a-f1_hi-res.gif

(90)  Wang, F., Ai, F., Lu, Y. C.*. "Ion selective membrane for redox flow battery, what’s next?" Next Energy, 2023. Link

1-s2.0-S2949821X23000522-gr1.jpg

(88)  Lei, J., Jiang, L., Lu, Y. C.*, "Emerging aqueous manganese-based batteries: Fundamental understanding, challenges, and opportunities" Chemical Physics Reviews, 2023. Link

Lei.jpg

(87)  Huang, Z., Sugiarto, L., Lu, Y. C.*, "Feature–target pairing in machine learning for battery health diagnosis and prognosis: A critical review" EcoMat, 2023. Link

eom212345-gra-0004-m.jpg

(86)  Yao, Y., Ma, W., Lei, J., Wang, Z., Lu, Y. C.*, Liu, L.* "Nonionic oligo(ethylene glycol)-substituted viologen negolytes for aqueous organic redox flow batteries" Journal of Materials Chemistry A, 2023. Link

d2ta09177a-f4_hi-res_edited.jpg

(85)  Wang, W.*, Lu, Y. C., "External field–assisted batteries toward performance improvement" SusMat, 2023. Link

sus2119-fig-0001-m.jpg

2022

(78)  Ai, F., Wang, Z., Lai, N., Zou, Q., Liang, Z., &  Lu, Y. C.*, "Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures" Nature Energy, 2022. Link

捕获.JPG
2022

(81)  Shi, Y., Lu, Y. C.*, "Embedded order boosts battery membranes" Nature Sustainability, 2022. Link

1.JPG
toc.tif

(84)  Sun, Y., Wang, Y., Jiang, L., Dong, D., Wang, W., Fan, Jun., Lu, Y. C.*, "Non-nucleophilic electrolyte with non-fluorinated hybrid solvents for long-life magnesium metal batteries" Energy & Environmental Science, 2022. Link

(83)  Lei, J., Yao, Y., Huang, Y.*, Lu, Y. C.*, "A Highly Reversible Low-Cost Aqueous Sulfur–Manganese Redox Flow Battery" ACS Energy Letter, 2022. Link

images_large_nz2c02524_0006.jpeg

(82)  Liang, Z., Wang, W., Lu, Y. C.*, "The path toward practical Li-air batteries" Joule, 2022. Link

1-s2.0-S2542435122005177-gr4.jpg

(80)  Jiang, L., Dong, D., Lu, Y. C.*, "Design strategies for low temperature aqueous electrolytes". Nano Research Energy, 2022. Link

nre-1-1-9120003-FE1.jpg

(79) Sun, Y., Ai, F., Lu, Y. C.*, "Electrolyte and Interphase Design for Magnesium Anode: Major Challenges and Perspectives"Small, 2022. Link

smll202200009-fig-0004-m.jpg

(77)  Xie, J., Guan, Y., Huang, Y., and Lu, Y. C.*, "Solid–Electrolyte Interphase of Molecular Crowding Electrolytes" Chemistry of Materials, 2022. Link

images_large_cm2c00722_0008.jpeg

(76)  Li, Z., Lu, Y. C.*, "Advanced aqueous redox flow batteries design: Ready for long-duration energy storage applications?" MRS Energy & Sustainability (2022). Link

微信图片_20220428212805.bmp

(75)  Yang, B., Wang, Z., Wang, W., & Lu, Y. C.*, "A Low-Crossover and Fast-Kinetics Thiolate Negolyte for Aqueous Redox Flow Batteries" Energy Material Advances, 2022. Link

9795675.fig.001.png

2021

(71)  Li Z. and Lu Y.C.*, "Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes" Nature Energy, 2021, 6, 517–528 Link

NE-ZJ.jpg

(70) Yao Y., Lei J., Shi Y., Ai F. and Lu Y.C.*, "Assessment methods and performance metrics for redox flow batteries" Nature Energy, 2021, 6, 582–588 Link

RFBNE.jpg

(74) Dong D., Xie J., Liang, Z. and Lu, Y.C*, "Tuning Intermolecular Interactions of Molecular Crowding Electrolyte for High-Performance Aqueous Batteries." ACS Energy Letters, 2021. Link

nz1c02064_0006.gif

(73) Shi, Y., Wang Z., Yao Y., Wang W., and Lu Y.C.*, "High-areal-capacity conversion type iron-based hybrid redox flow batteries." Energy & Environmental Science, 2021. Link

TOC.jpg

(72) Sun Y., Zou Q., Wang W., and Lu Y.C.* "Non-passivating Anion Adsorption Enables Reversible Magnesium Redox in Simple Non-nucleophilic Electrolytes." ACS Energy Letters 2021, 6, 3607-3613 Link

yue.gif

(69) Wang Y, Wang T, Dong D, Xie J, Guan Y, Huang Y, Fan J, and Lu YC. "Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes." Matter 2021.Link

Matter.jpg
2021

(68) Lei J, Yao Y, Wang Z, Lu YC. "Towards high-areal-capacity aqueous zinc-manganese batteries: promoting MnO2 dissolution by redox mediators". Energy & Environmental Science. 2021.Link

微信图片_20210712174425.png

(67) Zou Q, Sun Y, Liang Z, Wang W, Lu YC. "Achieving Efficient Magnesium–Sulfur Battery Chemistry via Polysulfide Mediation." Advanced Energy Materials.2021,2101552, Link.

TOC_edited.jpg

(66) Wang W, Lu YC. "The Potassium–Air Battery: Far from a Practical Reality?". Accounts of Materials Research. 2021 Link.

mr1c00061_0007.gif

(65) Zou, Q. and Lu, Y.C. "Liquid electrolyte design for metal‐sulfur batteries: Mechanistic understanding and perspective" EcoMat, 2021, Link

1.png

(64) Liang, Z. and Lu, Y.C. "Mechanistic Understanding of Oxygen Electrodes in Rechargeable Multivalent Metal‐Oxygen Batteries" Batteries & Supercaps, 2021 Link

2.png

(63) Xie, J. and Lu, Y.C., "Towards practical organic batteries. Nature Materials" 2021, 20(5), 581-583. Link

3.png

(62) Liu, L., Yao, Y., Wang, Z. and Lu, Y.C., "Viologen radical stabilization by molecular spectators for aqueous organic redox flow batteries" Nano Energy, 2021, 84, 105897, Link

4.jpg

(61) Yao Y., Wang Z., Li Z., and Lu Y.C.* "A Dendrite-Free Tin Anode for High-Energy Aqueous Redox Flow Batteries" Advanced Materials, 2021, 33, 2008095 Link

YX.jpg

(60) Wang Y., Wang W., Xie J., Wang C.H., Yang Y.W., and Lu Y.C.*, "Electrochemical reduction of CO2 in ionic liquid: Mechanistic study of Li–CO2 batteries via in situ ambient pressure X-ray photoelectron spectroscopy" Nano Energy, 2021, 83, 105830, Link

Yu.jpg

(59) Wang W., Wang Y., Wang C.H., Yang Y.W., and Lu Y.C.*, "In Situ probing of solid/liquid interfaces of potassium–oxygen batteries via ambient pressure X-ray photoelectron spectroscopy: New reaction pathways and root cause of battery degradation" Energy Storage Materials, 2021, 36, 341-346, Link

TOC.jpg

(58) Yang B., Jiang H., Xie J., Zhao T.S., and Lu Y.C.*, "Diphenyl ditelluride as a low-potential and fast-kinetics anolyte for nonaqueous redox flow battery applications" Energy Storage Materials, 2021, 35, 761-771, Link

Scheme 1.jpg

2020

(57) Wang W., Lu Y.C.*, "Achieving a Stable Nonaqueous Air Cathode under True Ambient Air" ACS Energy Letters, 2020, 5, 3804-3812, Link

wanwan.gif
2020 & Before
Anchor 1

(56) Li Z., Lu Y.C.* "Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies" Advanced Materials, 2020,32, 2002132 Link

ZJ.jpg

(55) Zhou Y., Wang Z., Lu Y.C.* "Flexible Aqueous Lithium-ion Batteries with Ultrahigh Areal Capacity and Long Cycle Life" Materials Today Energy, Focused Issue Aqueous Batteries, 2020, 19, 100570 Link

zhou.jpg

(54) Huang W.#, Yu Y.#, Hou Z., Liang Z., Zheng Y., Quan Z.*, Lu Y.C.*, "Dendrite-Free lithium electrode enabled by graphene aerogels with gradient porosity" Energy Storage Materials 2020, 33, 329-335 Link

wei.jpg

(53) Liang Z, Zou Q., Xie J., and Lu Y.C.*, "Suppressing singlet oxygen generation in lithium-oxygen batteries with redox mediators" Energy & Environmental Science 2020, 13, 2870-2877 Link

liang ees 2020.jpg

2023

(91) Lei, J., Zhang, Y., Yao, Y., Yang, S., Leung, K., Fan, J., Lu, Y. C.*. "An active and durable molecular catalyst for aqueous polysulfide-based redox flow batteries" Nature Energy, 2023. Link

1.JPG

(52) Xie J., and Lu Y.C.*, "A retrospective on lithium-ion batteries" Nature Communications 2020, 11, Article #2499 Link

XJ-NC.jpg

(51) Xie J., Liang Z, and Lu Y.C.*, "Molecular crowding electrolytes for high-voltage aqueous batteries" Nature Materials 2020, 19, 1006-1011 Link

This work is highlighted by Nature Energy

Xing-NM.jpg

(50) Zhou Y., Cong G, Chen H. Lai N.C. and Lu Y.C.*, "A Self-Mediating Redox Flow Battery: High-Capacity Polychalcogenide-Based Redox Flow Battery Mediated by Inherently Present Redox Shuttles" ACS Energy Letters 2020, 5,1732-1740, Link

yucun acs.gif

(49) Wang Y., Lu Y.C., "Nonaqueous Lithium–Oxygen batteries: Reaction mechanism and critical open questions" Energy Storage Materials, 2020, 28, 235-246 Link

yuensm.jpg

(48) Wang Y., Lu Y.R., Dong C.L. and Lu Y.C.*,  "Critical Factors Controlling Superoxide Reactions in Lithium–Oxygen Batteries" ACS Energy Letters, 2020, 5,1355-1363 Link

Yu 2020.gif

2019

(47) Li Z., Jiang H., Lai N.C., Zhao T.S., Lu Y.C.* "Designing Effective Solvent–Catalyst Interface for Catalytic Sulfur Conversion in Lithium–Sulfur Batteries" Chemistry of Materials, 2019, 31,10186-10196 Link

ZJCM.gif

(46)  Sun Y., Zou Q., Lu Y.C.* "Fast and Reversible Four‐Electron Storage Enabled by Ethyl Viologen for Rechargeable Magnesium Batteries" Advanced Energy Materials, 2019,1903002 Link

TOC (1).jpg

(45) Huang W., Zou Q., Lu Y.C.* "Ion‐Selective Membrane‐Free Dual Sulfur‐Iodine Catholyte for Low‐Cost and High‐Power Flow Battery Applications" Batteries & Supercaps, 2019,2, 941-947 Link

batt201900107-toc-0001-m.jpg

(44) Lai N.C., Cong G., Lu Y.C.* "A high-energy potassium–sulfur battery enabled by facile and effective imidazole-solvated copper catalysts" J. Mater. Chem. A, 2019,7, 20584-20589 Link

toc.jpg

(43) Yang B., Jiang H., Zou Y., Liang Z., Zhao T.S., Lu Y.C.* "Critical Role of Anion Donicity in Li2S Deposition and Sulfur Utilization in Li–S Batteries" ACS Appl. Mater. Interfaces, 2019, 29, 25940-25948 Link

YB-1.gif

(42) Wang Z., Tam L.Y.S., Lu Y.C.* "Flexible Solid Flow Electrodes for High-Energy Scalable Energy Storage" Joule,  In press (2019) Link

Picture1.jpg

(41) Weng G.#, Yang B.#, Liu CY, Du GY, Li Elise Y,* Lu Y.C.*, "Asymmetric allyl-activation of organosulfides for high-energy reversible redox flow batteries" Energy & Environmental Science, 2019, 12, 2244-2252 Link

Graphic Abstract.jpg

(40) Wang Y., and Lu Y.C.*, "Isotopic Labeling Reveals Active Reaction Interfaces for Electrochemical Oxidation of Lithium Peroxide" Angewandte Chemie International Edition, 2019, 58, 6962-6966.  Link

Yu2019.jpg

(39) Cong G., Wang W., Lai N.C, Liang Z. and Lu Y.C.*, "A high-rate and long-life organic–oxygen battery" Nature Materials, 2019. 18, 390-396.  Link

2019-02-12-10-28-33-863.jpg

(38) Li Z., Zhou Y., Wang Y. and Lu Y.C.*, "Solvent‐Mediated Li2S Electrodeposition: A Critical Manipulator in Lithium–Sulfur Batteries" Advanced Energy Materials, 2019, 9, 1802207  Link

Graphic1.jpg

2018

 

(37) He Q., Gorlin Y., Patel M., Gasteiger H.A, and Lu Y.C.*, "Unraveling the Correlation between Solvent Properties and Sulfur Redox Behavior in Lithium-Sulfur Batteries" Journal of Electrochemical Society,  2018, 165, 16, A4027-A4033 Link

graphic-1.gif

(36) Liang Z., Zhou Y. and Lu Y.C.*, "Dynamic Oxygen Shield Eliminates Cathode Degradation in Lithium-Oxygen Batteries"  Energy & Environmental Science, 2018, 11, 3500-3510 Link

toc.jpg

(35) Li Z. and Lu Y.C.*, "Redox Flow Batteries: Want More Electrons? Go Organic!" Preview, Chem, 2018, 4, 2020 Link

redox flow batteries.jpg

(34) Wang Y., Lai N.C., Lu Y.R., Zhou Y., Dong C.L. and Lu Y.C.*, "A Solvent-Controlled Oxidation Mechanism of Li2O2 in Lithium-Oxygen Batteries" Joule, 2018, 2(11), 2018, 2364-2380 Link

fx1.jpg

(33) Zou Q., Liang Z., Du Q., Liu C., Li, E.Y. and Lu Y.C.*, "Cation–Directed Selective Polysulfide Stabilization in Alkali Metal–Sulfur Batteries" Journal of the American Chemical Society, 2018, 140 (34), 10740–10748 Link

TOC V10.png

(32) Chen N., Zhou Y., and Lu Y.C.*, "Lithium–Organic Nanocomposite Suspension for High-Energy-Density Redox Flow Batteries" ACS Energy Letters, 2018, 3, 1991-1997 Link

32.gif

(31) Lai N.C., Cong G., Liang Z. and Lu Y.C.*, "A Highly Active Oxygen Evolution Catalyst for Lithium-Oxygen Batteries Enabled by High-Surface-Energy Facets" Joule, 2018, 2, 8, 1511-1521 Link

(30) Wang W., Lai N.C., Liang Z. Wang Y. and Lu Y.C.*, "Superoxide stabilization and a universal KO2 growth mechanism in potassium-oxygen batteries" Angewandte Chem. Int. Ed, 2018, 57, 5042-5046 Link

(29) Chen H., Cong G. and Lu Y.C.*, "Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes" Journal of Energy Chemistry, 27, 5, 2018, 1304-1325, Link

2017

(28) Chen H., Lai N.C. and Lu Y.C.*, "Silicon-Carbon Nanocomposite Semi-Solid Negolyte and its Application in Redox Flow Batteries" Chemistry of Materials,  2017, 29, 7533-7542 Link

(27) Zhou Y., Li Z. and Lu Y.C.*, "A stable lithium–selenium interface via solid/liquid hybrid electrolytes: Blocking polyselenides and suppressing lithium dendrite" Nano Energy, 2017, 39, 554–561 Link

(26) Liang Z, Zou. Q, Wang Y. and Lu Y.C.*, "Recent Progress in Applying In Situ/Operando Characterization Techniques to Probe the Solid/Liquid/Gas Interfaces of Li–O2 Batteries" Small Methods, 2017, 1700150 Link

(25) Cong G., Zhou Y., Li Z., and Lu Y.C.*, " A Highly Concentrated Catholyte Enabled by a Low-Melting-Point Ferrocene Derivative" ACS Energy Letter, 2017, 2, pp 869–875 Link

(24) Weng G.M., Li Z., Zhou Y., Cong G., and Lu Y.C.*, "Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries" Energy & Environmental Science, 2017,10, 735-741 Link

(23) Weng G.M., Tam L.Y., and Lu Y.C.*, "High-performance LiTi2(PO4)3 anodes for high-areal-capacity flexible aqueous lithium-ion batteries" Journal of Materials Chemistry A, 2017, 5, 11764 - 11771 Theme Collection in Emerging Investigators 2017 Link

2016 & Before

(22) Li Z., Weng G.M., Zou Q., Cong G., and Lu Y.C.*, "A High-Energy and Low-Cost Polysulfide/Iodide Redox Flow Battery" Nano Energy, 30, 283-292, 2016 Link

(21) Liang Z. and Lu Y.C.*, "Critical Role of Redox Mediator in Suppressing Charging Instabilities of Lithium-Oxygen Batteries" Journal of the American Chemical Society, 138 (24), pp 7574–7583, 2016 Link

(20) Zou Q., and Lu Y.C.*, "Solvent-Dictated Lithium Sulfur Redox Reactions: An Operando UV–vis Spectroscopic Study" Journal of Physical Chemistry Letter, 2016, 7, pp 1518–1525 Link

(19) Wang Y., Liang Z., Zou Q., Cong G. and Lu Y.C.*, "Mechanistic Insights into Catalyst-Assisted Non-Aqueous Oxygen Evolution Reaction in Lithium-Oxygen Batteries" Journal of Physical Chemistry C, 2016, 120 (12), pp 6459–6466 Link

(18) Chen H., and Lu Y.C.*, "A High-Energy-Density Multiple Redox Semi-Solid-Liquid Flow Battery" Advanced Energy Materials, 2016, 6, 1502183, DOI: 10.1002/aenm.201502183. Link

(17) Chen H., Zou Q., Liang Z., Liu H., Li Q., and Lu Y.C.*, "Sulphur-Impregnated Flow Cathode to Enable High-Energy-Density Lithium Flow Batteries" Nature Communications, 6, Article number: 5877, (2015). Link

(16) Lu Y.C.,* He Q., and Gasteiger H.A., “Probing the Lithium–Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study" Journal of Physical Chemistry C (2014) 118, 5733-5741 Link

(15) Lu Y.C., Gallant B.M., Kwabi D.K, Harding J.R., Mitchell R.R., Whittingham S.M., and Shao-Horn Y. “Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance" Energy and Environmental Science, 6, 750-768, (2013). Link

Highly Cited Paper

(14) Lu Y.C.* and Shao-Horn Y. “Probing the Reaction Kinetics of the Charge Reactions of Nonaqueous Li-O2 batteries." Journal of Physical Chemistry Letter, 4, 93-99, (2013). Link

Highly Cited Paper

(13) Lu Y.C., Crumlin E., Carney J.T., Baggetto L., Veith G.M., Dudney N.J., Liu Z., and Shao-Horn Y. “Influence of Hydrocarbon and CO2 on the Reversibility of Li−O2 Chemistry Using In Situ Ambient Pressure X‑ray Photoelectron Spectroscopy” Journal of Physical Chemistry C,117, 25948–25954, (2013) Link

(12) Lu Y.C., Crumlin E., Veith G.M., Harding J.R., Mutoro E., Baggetto L., Dudney N.J., Liu Z., and Shao-Horn Y. “ In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions” Scientific Reports, 2, 715, (2012). Link

(11) Harding J.R., Lu Y.C., Tsukada Y., and Shao-Horn Y., “Evidence of Catalyzed Oxidation of Li2O2 for Rechargeable Li-Air Battery Applications" Physical Chemistry Chemical Physics, 14(30), 10540-10546 (2012). Link

(10) Lu Y.C., Gasteiger H.A., and Shao-Horn Y. “Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries” Journal of the American Chemical Society, 133(47) 19048-19051 (2011). Link

Highly Cited Paper

(9) Lu Y.C., Kwabi D.G, Yao K.P.C., Harding J.R., Zhou J., Zuin L., and Shao-Horn Y., “The Discharge Rate Capability of Rechargeable Li-O2 Batteries” Energy and Environmental Science, 4(8) 2999-3007 (2011). This article was among the top 10 accessed articles from the online version of Energy and Environmental Science, July, 2011. Link

Highly Cited Paper

(8) Lu Y.C., Gasteiger H.A., and Shao-Horn Y., “Method Development to Evaluate the Oxygen Reduction Activity of High-Surface-Area Catalysts for Li-Air Batteries” Electrochemical and Solid-State Letters, 14(5), A70-A74 (2011). This article has been selected for the March, 2011 issue of Virtual Journal of Nanoscale Science & Technology. Link

捕获.JPG

(7) Yabuuchi N., Lu Y.C., Mansour A.N., Chen S., and Shao-Horn Y., “The Influence of Heat-Treatment Temperature on the Cation Distributionof LiNi0.5Mn0.5O2 and Its Rate Capability in Lithium Rechargeable Batteries” Journal of the Electrochemical Society, 158(2), A192-A200 (2011). Link

(6) Lu Y.C., Xu Z., Gasteiger H.A., Chen S., Hamad-Schifferli K., and Shao-Horn Y., “Platinum-Gold nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries” Journal of the American Chemical Society 132(35) 12170-12171 (2010). This article was selected as the cover highlight of the Journal of the American Chemical Society issued in September, vol. 132, 2010. Link  

Highly Cited Paper 

(5) Lu Y.C., Gasteiger H.A., Parent M., Chiloyan V., and Shao-Horn Y., ”The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li-OxygenBatteries” Electrochemical and Solid-State Letters 13(6) A69-A72 (2010). Link

Highly Cited Paper

(4) Lu Y.C., Gasteiger H.A., Crumlin E., McGuire R., and Shao-Horn Y., ”Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries” Journal of the Electrochemical Society 157(9) A1016-A1025 (2010). This article has been selected for the July, 2010 issue of Virtual Journal of Nanoscale Science & Technology. Link

Highly Cited Paper

(3) Yabuuchi N., Lu Y.C., Mansour A.N., and Shao-Horn Y., “The Influence of Surface Chemistry on the Rate Capability of LiNi0.5Mn0.5O2 for Lithium Rechargeable Batteries” Electrochemical and Solid-State Letters 13(11) A158-A161 (2010). Link

(2) Lu Y.C., Mansour A.N., Yabuuchi N. and Shao-Horn Y., ”Probing the Origin of Enhanced Stability of “AlPO4” nanoparticle Coated LiCoO2 During Cycling to High Voltages: Combined XRD and XPS Studies” Chemistry of Materials, 21(19) 4408-4424 (2009). Link

(1) Lu Y.C., Chuang Y.S. Chen Y.Y., Shu A.C., Hsu H.Y., Chang H.Y., and Yew T.R. “Bacteria Detection Utilizing Electrical Conductivity” Biosensors and Bioelectronics, 23(12), 1856-1861 (2008). Link

Book Chapters

Gallant B.M. , Lu Y.C., Mitchell R.R., Kwabi D.G., Carney T.J., Thompson C.V., Shao-Horn Y. “ The Kinetics and Product Characteristics of Oxygen Reduction and Evolution in Li-O2 Batteries,” Imanishi N., Luntz A.C. and Bruce P. (eds.), The Lithium Air Battery – Fundamentals, Springer, pp. 121-158, 2014.

bottom of page